(3y-5y^3+4y^2-13)-(2y^2-9y^3+y-14)=

Simple and best practice solution for (3y-5y^3+4y^2-13)-(2y^2-9y^3+y-14)= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3y-5y^3+4y^2-13)-(2y^2-9y^3+y-14)= equation:


Simplifying
(3y + -5y3 + 4y2 + -13) + -1(2y2 + -9y3 + y + -14) = 0

Reorder the terms:
(-13 + 3y + 4y2 + -5y3) + -1(2y2 + -9y3 + y + -14) = 0

Remove parenthesis around (-13 + 3y + 4y2 + -5y3)
-13 + 3y + 4y2 + -5y3 + -1(2y2 + -9y3 + y + -14) = 0

Reorder the terms:
-13 + 3y + 4y2 + -5y3 + -1(-14 + y + 2y2 + -9y3) = 0
-13 + 3y + 4y2 + -5y3 + (-14 * -1 + y * -1 + 2y2 * -1 + -9y3 * -1) = 0
-13 + 3y + 4y2 + -5y3 + (14 + -1y + -2y2 + 9y3) = 0

Reorder the terms:
-13 + 14 + 3y + -1y + 4y2 + -2y2 + -5y3 + 9y3 = 0

Combine like terms: -13 + 14 = 1
1 + 3y + -1y + 4y2 + -2y2 + -5y3 + 9y3 = 0

Combine like terms: 3y + -1y = 2y
1 + 2y + 4y2 + -2y2 + -5y3 + 9y3 = 0

Combine like terms: 4y2 + -2y2 = 2y2
1 + 2y + 2y2 + -5y3 + 9y3 = 0

Combine like terms: -5y3 + 9y3 = 4y3
1 + 2y + 2y2 + 4y3 = 0

Solving
1 + 2y + 2y2 + 4y3 = 0

Solving for variable 'y'.

The solution to this equation could not be determined.

See similar equations:

| -3y=5x-15 | | -216-(-60b)+8=32 | | -208+(-60b)=32 | | x*8+5=-1.2 | | 8+x=19-2 | | (X+13)(x)=(x+1)(x+10) | | X^2+y^2+2x-6y-6=0 | | 5[12-(6-3a)-2a]=(1-a) | | 15x+4y=-4 | | (-216--60b)+8=32 | | 2y^2=210 | | -9x-6=5-1x | | 3x^2+24x+4y^2-40y+52=0 | | Ln(x^2-4)-ln(x+2)=-ln(x-2) | | -75+m=-10 | | (x-3)(y+4)=360 | | 4x^2-48x-y^2+54y+99=0 | | 4x+6y+5z=80 | | 0.457x=6.67 | | 15n+9=-21 | | 18=2x^2+x | | 8x-5=12x+15 | | x^2-x-114=0 | | 2y-4=t+8 | | (x+8)(x+3)-234=0 | | 1.4x=1.2x+10 | | 3g-24g+27=0 | | .02x+.04(1500-x)=48 | | 5k+6fork=4 | | 2*ln(x-2)+2*ln*2=2 | | 7y+9=6y-9 | | (105)3= |

Equations solver categories